Clickbait Identification using Neural Networks

نویسنده

  • Philippe Thomas
چکیده

This paper presents the results of our participation in the Clickbait Detection Challenge 2017. The system relies on a fusion of neural networks, incorporating different types of available informations. It does not require any linguistic preprocessing, and hence generalizes more easily to new domains and languages. The final combined model achieves a mean squared error of 0.0428, an accuracy of 0.826, and a F1 score of 0.564. According to the official evaluation metric the system ranked 6th of the 13 participating teams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neural Clickbait Detection Engine

In an age where people are becoming increasing likely to trust information found through online media, journalists have begun employing techniques to lure readers to articles by using catchy headlines, called clickbait. These headlines entice the user into clicking through the article whilst not providing information relevant to the headline itself. Previous methods of detecting clickbait have ...

متن کامل

ClickBAIT: Click-based Accelerated Incremental Training of Convolutional Neural Networks

Today’s general-purpose deep convolutional neural networks (CNN) for image classification and object detection are trained offline on large static datasets. Some applications, however, will require training in real-time on live video streams with a human-in-the-loop. We refer to this class of problem as Time-ordered Online Training (ToOT)—these problems will require a consideration of not only ...

متن کامل

Clickbait Detection in Tweets Using Self-attentive Network

Clickbait detection in tweets remains an elusive challenge. In this paper, we describe the solution for the Zingel Clickbait Detector at the Clickbait Challenge 2017, which is capable of evaluating each tweet’s level of click baiting. We first reformat the regression problem as a multi-classification problem, based on the annotation scheme. To perform multi-classification, we apply a token-leve...

متن کامل

Fishing for Clickbaits in Social Images and Texts with Linguistically-Infused Neural Network Models

This paper presents the results and conclusions of our participation in the Clickbait Challenge 2017 on automatic clickbait detection in social media. We first describe linguistically-infused neural network models and identify informative representations to predict the level of clickbaiting present in Twitter posts. Our models allow to answer the question not only whether a post is a clickbait ...

متن کامل

Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.08721  شماره 

صفحات  -

تاریخ انتشار 2017